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REVIEW
Targeting angiogenesis for cancer (gene) therapy
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Abstract: Suppression of development of new blood vessels in solid tumors provides a clear therapeutic
benefit both in experimental animals and human patients. Molecules targeting multiple pathways with VEGF
pathway being one of the best described are currently under consideration to reach use in clinical settings.
Even though some success has been observed using traditional protein-based inhibitors, alternative strate-
gies and new approaches to inhibit excessive tumor angiogenesis are being developed and tested. Gene
therapy represents a powerful tool for therapeutic intervention to angiogenesis. Delivery of genes encoding
endogenous angiogenesis inhibitors and decoy receptors for proangiogenic factors may bear an advantage
over classic non-gene therapy in terms of specific targeting, cost-effectiveness and safety. Modern approaches
focused on gene targeting such as RNA interference and microRNA will show the future direction in the field
of angiogenesis inhibition for cancer treatment (Ref. 68). Full Text in free PDF www.bmj.sk.
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First indications that the growth of human tumors is often
associated with increased vascularization were observed more
than 100 years ago (1). The presence of tumor — produced fac-
tors was postulated as early as 70 years ago. However, the actual
rationale for studying the role of angiogenesis in tumorigenesis
has become the Folkman’s hypothesis in 1970s saying that solid
tumors larger than 1-2 mm are not able to ensure cell nutrition
only by diffusion and, thus, neovascularization takes place here
(2). Hence, tumors are dependent on active angiogenesis. This
hypothesis triggered a new wave of research focused on explain-
ing the molecular basis of tumor angiogenesis and identification
of'angiogenic inducers/inhibitors as molecules of targeted therapy
(3). Angiogenesis research has emerged as one of the most com-
prehensive research areas in biomedicine, and development of
novel drugs by targeting angiogenesis has become one of the
main focuses among pharmaceutical giants (4).

The pathway of VEGF-A and its receptors has become the
best described signal pathway in developmental as well as re-
productive and bone angiogenesis. Its importance is further con-
firmed by the fact that loss of one allele leads to embryonic le-
thality. Moreover, extensive experimental and clinical data has
verified the role of VEGF in pathological angiogenesis and, thus,
the rationale for the therapeutic use of VEGF inhibitors (5).
VEGF-A binds both receptors, VEGFR-1 and VEGFR-2. It is
generally accepted that mitogenic, angiogenic and permeability
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increasing effects of VEGF-A are mediated by VEGFR-2, whereas
the role of VEGFR-1 in angiogenesis is more complex. Under
certain conditions, VEGFR-1 can serve as a decoy receptor se-
questering VEGF and blocking its interaction with VEGFR-2. It
also has a role in hematopoiesis and activation of monocytes and
other cells originating from bone marrow, which can settle down
in tumor vasculature and support tumor angiogenesis. At last,
VEGFR-1 may be eventually expressed by tumor cells, what fur-
ther broadens the actions of this receptor in tumor growth (6).

Expression of VEGF-A in tumors is stimulated by hypoxia.
The central role in this regulation is played by transcription of
hypoxia inducible factor (HIF), which, under normoxic condi-
tions, is ubiquitinylated and degraded. It has been proven that
the expression of VEGF-A is markedly increased in many hu-
man tumors. This expression cannot be contributed solely to
hypoxia and mutation/inactivation of tumor suppressor genes
(such as von Hippel-Lindau factor, VHL), but also to the effect
of oncogenes like mutated ras, erbB-2/Her2, activated EGFR and
ber-abl. Mabjeesh and Amir emphasize the role of increased HIF-
1 expression in tumorigenesis and its correlation to clinical sta-
tus and prognosis (7).

Several preclinical studies showed that monoclonal antibod-
ies against VEGF-A inhibit tumor growth in vivo in mice and this
effect was proven on various tumor cell lines regardless of tumor
origin (8, 9). Tumor growth inhibition iz vivo has also been ob-
served using different anti-VEGF approaches including applica-
tion of dominantly negative VEGFR-2 (10), antibodies against
VEGFR-2 (11), low molecular weight inhibitors VEGF RTK (12),
soluble VEGF receptors (13) and VEGF vaccination (14). Re-
cently it was found that an IgG-like fusion protein molecule
VEGFR31-Ig that simultaneously binds VEGF-A and VEGF-C
potently blocked tumor angiogenesis and lymphangiogenesis, ef-
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fectively inhibiting primary tumor growth and metastasis in a highly
metastatic human hepatocellular carcinoma mouse model (15).

Besides cancer treatment, anti-VEGF therapy also has appli-
cations in different disorders. Age-related macular degeneration
is the most common cause of serious irreversible loss of vision
in the elderly. One of the treatments approved by the American
Food and Drug Administration (FDA) is ranibizumab — recom-
binant humanized Fab antibody binding and neutralizing all hu-
man VEGF-A isoforms (16). It is further known that besides its
vascular activity, VEGF represents a trophic signal for neurons,
epithelial lung cells and cardiomyocytes, explaining why a de-
creased VEGF level may contribute to neurodegeneration, res-
piration distress and heart failure (17).

The other signal molecules playing a clear role in develop-
ment and differentiation of vascular wall are represented by a
family of PDGF (PDGF-B/PDGFR-f3) and angiopoietins (Ang)
acting as ligands of Tie2 receptor. The role of PDGF-B consists
of activation of pericytes and maturation of microvasculature.
Inhibiting the PDGFR-[ signalization in tumor leads to an en-
hanced dependency of tumor vascular net on VEGF-mediated
signals. Within this context, it is interesting that newly formed
vessels, regardless of their origin, are particularly sensitive to
absence of VEGF-A, whereas mature vessels covered by extra-
cellular matrix and pericytes may be resistant to VEGF inhibi-
tors and other antiangiogenic substances. Therefore, the combi-
nation of VEGF and PDGF inhibitors represents an attractive
antivascular and anticancer strategy (18). Angiopoietin-1 is nec-
essary for further remodeling and maturation of initially imma-
ture vasculature. In addition, the function of angiopoietin-2 in
tumor angiogenesis has been recently uncovered, making the
inhibitors of this molecule another candidate for therapeutic ap-
plication (19). Selective inhibition of angiopoietin-2 has been
found to be efficient in slowing the tumor growth by limiting the
tumor angiogenesis and, more importantly, this effect is comple-
mented by concurrent inhibition of VEGF leading to reduced
proliferation and increased apoptosis of tumor cells (20).

Angiogenesis is a finely regulated process, which is under
control of positive as well as negative regulation factors. Even
though several endogenous negative regulators of angiogenesis
have been described so far, their function in physiological an-
giogenesis regulation is still not completely clear. Thrombo-
spondin is a large multifunctional glycoprotein secreted by epi-
thelial cells into extracellular matrix that inhibits angiogenesis
related to tumor growth and metastasis. Apart from that, several
fragments of large proteins have been described as endogenous
angiogenesis inhibitors, including endostatin, angiostatin,
tumstatin and vasostatin. Specific mechanism of action of these
proteins is still yet to be fully explained, although a few hypoth-
eses have been published (21, 22).

Inhibition of tumor angiogenesis
Inhibition of tumor angiogenesis can be achieved by several

strategies and on various levels. The classic targeted “non-gene”
antiangiogenic strategies comprise targeting of:
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a) endothelial (progenitor) cells

The most famous antiangiogenic substances of this group
are VEGF inhibitors. Clinically significant are anti-VEGF anti-
body bevacizumab, VEGF  aptamer and various RTK inhibi-
tors targeting VEGFR and other receptors pathways. The others
include antibodies against VEGFR-1, VEGFR-2 and PIGF.

b) blood vessel mural cells and stromal cells

Pericytes differentiate from perivascular progenitor cells
mobilized as a response to PDGF-BB. They increase the stabil-
ity of vessels through a local production of VEGF and angio-
poietin 1. Combined administration of RTK inhibitors against
VEGFR and PDGFR can have a synergistic effect even in rigid
and resistant advanced tumor stages

¢) hematopoietic cells

Some chemokines such as IL-8 directly stimulate the growth
of endothelial cells. Inhibition of these chemokines, thus, reduces
tumor growth. Blocking the signals enabling infiltration of leu-
kocytes into tumors can therefore inhibit tumor angiogenesis.

d) neoplastic cells

Targeted cytotoxic, radiation or biological therapy of tumors
also includes some antiangiogenic approaches. Tumor cells se-
crete angiogenic molecules and induce the expression of angio-
genic receptors in tumor vessels (EGFR and VEGFR). EGFR
inhibitors inhibit the growth of neoplastic epithelial cells. More-
over, tumor cells themselves express the receptors for VEGF,
PDGF, FGF, EGF and other angiogenic factors on their surface.
Therefore, antiangiogenic factors can directly kill tumor cells by
blocking the signal pathways necessary for cell survival and in-
creasing sensitivity to a different kind of therapy. Broad-spec-
trum RTKs Sorafenib and Sutent inhibit proliferation of endot-
helial and tumor cells through various pathways at the same time,
thus being effective in monotherapy of certain tumors (23). In a
recent phase II trial safety and efficacy of pazopamib, a multi-
targeted tyrosine kinase inhibitor against VEGFR-1, -2 and -3,
PDGFRa and B and c-Kit was tested in recurrent glioblastoma
patients (24). However, this multi-targeted drug failed to show
significant response at the maximum tolerated dose. Results from
several other phase I studies using multi-targeted angiogenesis
inhibitors have been recently published with partially successful
outcomes (25, 26).

Combination therapy using angiogenesis inhibitors is not lim-
ited only to parallel application of cytotoxic chemotherapy, how-
ever, several preclinical and clinical studies analyzed the combi-
nation of different angiogenesis inhibitors with other targeted
therapies such as EGFR/Her2 inhibitors (cetuximab, erlotinib
and trastuzumab), PDGFR/bcer-abl inhibitors (imatinib), protea-
some inhibitors (bortezomib) or integrin inhibitors (27).

A number of clinical studies focused on proving the effect of
antiangiogenic therapies are ongoing worldwide in parallel. The
National Institutes of Health (NIH) website provides a basic sum-
mary of antiangiogenic drugs that were or are still currently un-
der clinical investigation (http://www.cancer.gov/clinicaltrials/
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developments/antiangio-table). The best known drug for therapy of
tumors is bevacizumab — a monoclonal antibody against VEGF-A.
Results from several clinical trials have been published showing
promising data with using bevacizumab (28, 29). The Food and
Drug Administration (FDA) has approved bevacizumab (Avastin®)
for use with other drugs to treat colorectal cancer that has spread
to other parts of the body, some non-small cell lung cancers, glio-
blastoma and some breast cancers that have spread to other parts
of the body. Bevacizumab was the first angiogenesis inhibitor
proven to delay tumor growth and, more importantly, extend the
lives of patients. The FDA has also approved other drugs with
antiangiogenic activity as cancer therapies for multiple myeloma,
mantle cell lymphoma, gastrointestinal stromal tumors and kid-
ney cancer.

Interestingly, angiogenesis inhibitor therapy may not neces-
sarily kill tumors, but may instead keep tumors stable. There-
fore, this type of therapy may need to be administered over a
long period. Because angiogenesis is important in wound healing
and in reproduction, long-term treatment with antiangiogenic
agents may cause problems with bleeding, blood clotting, heart
function, the immune system, and the reproductive system (30).
A meta-analysis of randomized controlled trials has shown that
treatment with bevacizumab may significantly increase the risk
of cardiac ischemic events in cancer patients (31). Since angio-
genesis inhibitor therapy is still under investigation, all of the
possible complications and side effects are still unknown. More-
over, results from the first of clinical anti-VEGF adjuvant cancer
therapy studies were disappointing, stimulating extensive debate
as to the potential of this approach. It will require additional
clinical studies before we realize whether the effects of angio-
genic blockade are durable, and if they are able to cure a subset
of patients with early stage cancer (32).

Although much success with antiangiogenic therapy has been
reported in preclinical and clinical studies, resistance to this
therapy is a problem in human medicine (33). There are several
mechanisms of resistance development. Even though still many
patients do benefit from VEGF inhibitors therapy, there are some
indications that VEGF-A signal pathway could be substituted by
a different proangiogenic pathway during progress of the disease.
Other reasons include the selection of tumor cells resistant to hy-
poxia (nondependent on angiogenesis), the remodeling of tumor
vessels leading to decreased sensitivity to antiangiogenic therapy,
the overproduction of angiogenic chemokines from macrophages
infiltrating tumors, but also the heterogeneity and genetic instabil-
ity of endothelial cells in tumor blood vessels. Recent studies have
confirmed that VEGF, besides playing a crucial role in angiogen-
esis, does indeed serve multiple additional functions (34). These
findings have important implications for the use of VEGF antago-
nists and VEGF receptor antagonists in patients for whom inhibi-
tion of pathological angiogenesis is the therapeutic goal.

Angiogenesis and gene therapy

Considering the fact that the fundamental discoveries and
new findings in medicine are being crystallized on genetic and
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genomic levels, gene therapy is one of the potential mechanisms
for therapeutic intervention to angiogenesis. Gene therapy in
a broad sense, i.e. all the therapeutic strategies employing nucleic
acids as carriers of genetic information, found its utilization in
most areas of medicine, including angiogenesis research.
Similarly to classical “non-gene* therapy, the angiogenesis
research in gene therapy is happening on the preclinical level
using appropriate animal models, with cancer and cardiovascu-
lar diseases being the most abundant indications. There are sev-
eral different strategies known. Besides the delivery of thera-
peutic gene (replacement of the mutated gene by a functional
one or delivery of the gene because of lack of the gene product),
novel strategies are also being widely used based on blocking
the function of a specific gene by application of RNA interfer-
ence inducing sequences, antisense inhibition etc. Vectors for
transfer of therapeutic sequences into target cells can be divided
into three basic groups: viral, non-viral (naked DNA) and bacte-
rial. Vectors and delivery systems, their construction strategies,
pros and cons as well as application in therapy of specific dis-
eases are reviewed in our paper (35). Since then, several impro-
vements and new findings have been published though (36, 37).
The first clinical studies focused on therapy of genetic dis-
eases of the immune system were initiated twenty years ago and
gene therapy has been proven to be useful in almost all groups of
diseases ever since, including infectious (38), psychiatric (39),
but also post-injury states (40). One of the key advantages of
gene approaches is the endogenous production of the therapeu-
tic molecule. Furthermore, targeted gene delivery specifically into
the target tissue or only to a certain cell type can dramatically
decrease the likelihood of adverse effects. Along with the devel-
opment of new vectors and regulatory systems, the ability to con-
trol the expression of therapeutic gene in time and space is being
improved. This is of great importance in affecting such complex
and complicated processes as angiogenesis. Currently, almost
three quarters of indications addressed by gene therapy clinical
trials are represented by cancer and cardiovascular diseases.

Antiangiogenic gene therapy of cancer

Gene therapy-based angiogenesis inhibiting strategies have
gained much attention thanks to their advantages over the con-
ventional antiangiogenic treatments. Given that effective inhibi-
tion of pathological angiogenesis requires long term treatment,
gene therapy may be of importance for selective gene transfer to
the affected areas and prolonged expression of therapeutic genes.
Apart from that, gene therapy provides a possibility to circum-
vent the issues associated with recombinant proteins production,
stability and solubility. Gene transfer allows for appropriate fold-
ing and stability of encoded proteins in vivo in the natural envi-
ronment. An interesting advantage is also the ability to selec-
tively target the gene transfer into certain tissues enabling local-
ized expression and high regional drug concentration without
increasing systemic levels. One of the key justifications for us-
ing gene therapy is also an insufficient efficiency of “non-gene*
therapies based on inhibition of VEGF and other growth factors



signal pathways in humans (41, 42). The most commonly used
gene therapy approach in cancer is so called suicide cytotoxic
therapy using thimidin kinase or other chemosensitizing genes
that allow the conversion of inactive prodrug (ganciclovir) into
a cytotoxic product (43, 44).

Preclinical studies

Antiangiogenic gene therapy of cancer has been tested on a
preclinical level in various carcinogenesis models. Most of the
studies performed so far have used viral vectors (adenoviruses,
retroviruses, lentiviruses, adeno-associated viruses, herpes sim-
plex viruses) encoding endogenous angiogenesis inhibitor genes
such as cytokines/chemokines (IFN-a, IFN-f3, IFN-y, CXCL10,
IL-12,1L-18, TNF-a), VEGF blockers (sFlt-1, Flk-1), proteolytic
fragments (angiostatin, endostatin, vasostatin, tumstatin) and
others (45). For example, in a colorectal cancer model an aden-
ovirus-based therapy using genes encoding IFN-f3 (46) and
endostatin (19) as well as plasmids encoding Flk-1 (47) and
tumstatin (48) have been successfully applied. In a model of
malignant melanoma, retrovirus vectors carrying genes encod-
ing CXCL10 (49), lentiviruses encoding PEX gene (50) and plas-
mids encoding vasostatin (51) and MCP-1 (52) genes have been
successfully used, all exerting a clear antiangiogenic effect. Re-
cently, a systemically available antiangiogenic gene therapy us-
ing adenovirus bearing soluble VEGF receptor gene has been
proven to be effective in suppressing tumor growth in various
oral cancer cell line xenografts in mice (53). Similarly, a tumor-
selective replicating adenovirus expressing IL-18 could exert
potential antitumor activity via inhibition of angiogenesis in
melanoma-bearing mice (54).

Several studies have been performed using gene delivery of
endogenous angiogenesis inhibitor endostatin. A liposome-en-
capsulated adenovirus encoding endostatin was applied in therapy
of ovarian cancer (55). Systemic administration was well-toler-
ated and resulted in marked suppression of tumor growth, which
was associated with a decreased number of micro-vessels and
increased apoptosis of tumor cells. An interesting novel thera-
peutic approach for pancreatic cancer has been employed in a
study using vaccinia virus encoding the endostatin-angiostatin
fusion gene (56). Besides high selectivity of the used vector, in-
hibition of angiogenesis and a clear antitumor potency has been
observed. A combined immunostimulatory and antiangiogenic
gene therapy (IFNgamma-endostatin gene delivery) together with
radiotherapy provided a potent antitumor effect in a murine meta-
static breast tumor model (57). In another study, combined
antiangiogenic and proapoptotic gene therapy involving
endostatin and sTRIAL (soluble tumor necrosis factor-related
apoptosis-inducing ligand) effectively suppressed hepatocellu-
lar carcinoma growth and angiogenesis in nude mice (58). At
last, adenovirus-mediated endostatin gene delivery combined with
cisplatin treatment was effective in a lung cancer murine model
(59). These studies represent a future direction in cancer research
in which instead of targeting a single molecule, a combinatorial
approach targeting multiple factors and/or an additional thera-

Gardlik R et al. Targeting angiogenesis for cancer (gene) therapy

peutic approach is applied to cover multiple pathways of cancer
progression.

Clinical studies

Despite a relatively high number of clinical studies using
cancer gene therapy, specifically antiangiogenic gene therapy has
only been exploited in a few studies. Intratumoral injection of
adenovirus encoding immunostimulatory cytokine IL-12 has been
tested in patients with advanced gastrointestinal cancer (liver,
colorectal, pancreatic tumors) in phase I study (60). The therapy
was well tolerated, although only a moderate antitumor effect
was observed. In another study, plasmid bearing IL-12 gene was
applied to patients with malignant melanoma (61). In two out of
nine patients, the disease was stabilized for period of over three
years and a complete remission was achieved in one patient. In
these patients, a localized reduction in angiogenesis has been
proven by immunohistochemistry. However, the rest of the pa-
tients showed only temporal response to the therapy. A recent
phase I clinical trial of IL-12 plasmid/lipopolymer complexes
has also shown a clinical benefit in treatment of recurrent ova-
rian cancer without adverse events (62). In a different phase |
study, adenovirus vector carrying IFN-a gene has been used in
therapy of malignant pleural mesothelioma (63). In all the above-
mentioned studies, however, inhibition of angiogenesis was not
the primary goal, yet a part of the antitumor effect. The need for
more clinical studies primarily targeting the angiogenic factors
is of crucial importance for the whole field of cancer gene therapy
in order to move forward. Both, employing the new molecular
targets successfully tested in preclinical setting as well as target-
ing several angiogenesis pathways at the same time seem to be
good perspectives for promoting antiangiogenic gene therapy
from the bench to bedside.

Future directions

Angiogenesis is currently one of the target processes for can-
cer therapy. Several protein-based angiogenesis inhibitors have
been successfully tested in preclinical as well as clinical studies.
Some of them even reached the status of approved drugs for treat-
ment of solid tumors. However, growing resistance to these mol-
ecules along with adverse effects and high cost all support the
need for alternative strategies.

The explosion of new findings on angiogenesis in the last 15
years goes hand in hand with development and improvement of
modern techniques and knowledge from molecular biology. Ge-
netic studies on model organisms provided a new view on the
key mechanisms and molecules that regulate the growth of blood
and lymphatic vessels. Gene therapy has been proven as a prom-
ising and rapidly growing field of basic and clinical research
with angiogenesis being one of the target processes to affect.
Further studies on angiogenesis inhibition employing gene-tar-
geting techniques such as RNA interference (RNAi) will show
future directions in the field of cancer therapy. One of the most
important papers in recent years was the study of Kleinman et
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al., who have reported a sequence- and target-independent an-
giogenesis suppression by short interfering RNA (siRNA) via
toll-like receptor 3 (TLR3) (64). Here, the non-specific siRNA
suppressed dermal neovascularization in mice as effectively as
VEGF-specific siRNA. The effect was mediated through cell
surface TLR3, its adaptor TRIF and induction of IFNgamma and
IL-12. These results suggest that all siRNA-based RNAI strate-
gies activating TLR3 have to face non-specificity, which, how-
ever, does not have to be considered a disadvantage. Even though
a specific silencing is desired, a different approach/vector should
be used to avoid activating of TLR3 pathway. Apart from RNAI,
another big area of small RNA-related research that is gaining
much more attention these days is the microRNA research. More
importantly, microRNA has been found to play a key role in regu-
lation of angiogenesis, both in cancer and ischemic diseases, in-
dicating that the development of clinically relevant therapies can
be expected in a short time period (65—-68).

Considering the short time period taken from discovery to
clinical testing of the above mentioned molecular pathways
(RNAI and microRNA), it is likely that new yet undiscovered
mechanisms will emerge from basic research that could possibly
change the direction of current clinical research on cancer an-
giogenesis. We hypothesize that apart from the well-proved strat-
egies of anticancer therapy completely new ones will take the
lead in pursuit of better cancer treatment in 10 years. Angiogen-
esis-targeted gene therapy represents an excellent tool to reach
this goal.
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