EXPERIMENTAL STUDY

Synergistic effects of hyperbaric oxygen and granulocyte-colony stimulating factor on postoperative adhesion formation in a rat cecal abrasion model

Can Kece1, Fahrettin Yildiz1, Abdurrahman Simsek1, M Tahir Ozer1, Salih Deveci3, Taner Ozgurtas1, Serdar Sadir4, Ahmet Korkmaz4, Ozgur Korkmaz4, Nail Ersoz4, Turgut Tufan1

Gulhane Military Medical Academy, General Surgery, Ankara, Turkey. cankece@gmail.com

Abstract: Purpose: We investigated the synergistic effect of hyperbaric oxygen (HBO) and granulocyte-colony stimulating factor (G-CSF) on adhesion formation in rats.

Methods: 40 adult male Sprague-Dawley rats (250-350g) were divided into 4 groups. In group-1, no further management was undertaken. Group-2 received HBO therapy, group-3 was treated with 50ug/kg subcutaneous G-CSF once daily for 7 days following laparotomy and cecal abrasion and group-4 was given both G-CSF and HBO therapies. On the 7th day, all rats were sacrificed and adhesions were scored. Tissue samples from adhesions and peritonea and cecum wall were examined both pathologically and biochemically for tissue hydroxyproline content.

Results: No mortality occurred in study groups. When the groups were evaluated according to the adhesion numbers and grades, there was a statistically significant difference between the control and groups 3 and 4 (P<0.001). There was no statistically significant difference between groups 1 and 2 (p>0.05). HBO + G-CSF group was significantly different from control, HBO and G-CSF groups, regarding hydroxyproline contents (p=0.005). Inflammation and fibrosis did not differ significantly among the groups (p=0.248), (p=0.213).

Conclusion: HBO treatment could not reduce the adhesion formation alone. Combined use of HBO and G-CSF, has a markedly preventive effect on postoperative adhesion formation (Tab. 1, Fig. 2, Ref. 57). Full Text (Free, PDF) www.tmj.sk.

Key words: adhesion formation, postoperative adhesions, GCSF, hyperbaric oxygen.

Postoperative intra-peritoneal adhesion formation is a distressing outcome in all types of surgical operations. Adhesions develop following abdominal surgery, as a part of the wound healing process and are lead to small-bowel obstruction, chronic abdominal pain, female infertility, difficult reoperative surgeries and cummulative costs of care (1, 2).

All underlying pathophysiologic features of this phenomenon have not been still fully understood. The mechanism and stages of this unsolved surgical problem, have some similarities with the physiological healing process. It represents as a result of an aberration of the routine healing route. There are many important systemic and local factors affecting this complex matter such as; surgery, ischemia/hypoxemia, trauma to the peritoneum and infection (3, 4). It is widely accepted that, ischemic wounds can be infected easily and ischemia and/or infection deteriorate wound healing process (5, 6). Since hypoxemia and tissue hypoxygenation are key factors that limit and aberrate healing stages, preventing ischemia has been one of the main goals of the studies. So it is logical to state that the correction of this hypoxic condition and maintenance of sufficient tissue oxygenation, through administration of supplementary oxygen particularly in hyperbaric conditions, can be therapeutically efficient in overall healing process. Hyperbaric oxygen therapy (HBO) consists of inhalation of 100% oxygen in a high pressure-environment. The high amount of oxygen is an essential nutrient factor for cellular energy metabolism, and it has an additional importance for collagen formation, new vessel growth and inflammatory phase of the wound healing process (7–12).

Although it is clear that many multifactorial processes are involved in the adhesion formation, one of the important phase of wound healing response is the inflammation phase. For that reason, many studies in humans and in animal models have been focused on the activation or alteration of the inflammation (13, 14). Granulocyte-colony stimulating factor (G-CSF) and granulocyte monocyte-colony stimulating factor (GM-CSF) are two of these agents that have been found effective in wound healing, especially in colonic anastomoses (14). Many beneficial effects of G-CSF and locally applied GM-CSF on chemotaxis, neutro-
phil phagocytosis, differentiation of monocytes, increasing the mononuclear cell infiltration and bactericidal activities have been revealed in some studies (14–22). Because of such features, GM-CSF has antimicrobial effects and enhances wound healing response (23).

Thus, in this study we aimed to examine the synergistic effects of HBO and G-CSF which are two new subjects of search on postoperative intra-peritoneal adhesion formation in a rat cecal abrasion model. This study is also important because of the use of these two agents together for the first time for this purpose.

Methods

Animals

The Animal Studies Committee at Ankara Gulhane Military Medical Academy Hospital approved animal care and all experiments. 40 adult male Sprague-Dawley rats (250–350 g) were used for the study. The animal housing environment maintained a 12-hour light/dark cycle, a temperature of 22 °C, and allowed access to standard laboratory food and water ad libitum.

Experimental Protocol

All surgical procedures were performed by a single surgeon under aseptic conditions. Animals were initially anesthetized with 60 mg/kg intramuscular ketamine hydrochloride (Ketalar® Parke-Davis, Morris Plains, NJ).

For adhesion induction, we used a modified rat model of abdominal adhesion formation originally described by Krause et al (24); A midline abdominal incision, 4 cm in length, was applied. The cecum was put on gauze and abraded with a sterile dry 4x4 cm surgical gauze, until punctuate hemorrhage occurred on the surface of the cecum. Opposing areas of the abdominal wall and the parietal peritoneum were also abraded with a #11 scalpel. The cecum then was returned to its original location in the abdomen and the abdominal wall and subcutaneous skin were closed uninterrupted using Vicryl sutures (Johnson & Johnson, Tokyo, Japan).

The animals were divided into 4 groups. In group 1 (n=10), no further management was applied. Group 2 (n=10), received HBO therapy only following laparotomy and cecal abrasion. In group 3 (n=10), the rats were treated with 50ug/kg subcutaneous G-CSF (Neupogen, Basel, Switzerland) once daily for 7 days following laparotomy and cecal abrasion. Group 4 (n=10), was given both G-CSF and HBO therapies.

HBO treatment was started at the 3rd hour of the operation. Before HBO treatment, pressure cabin was washed out with 1 ATA oxygen for 10 min. Rats in groups 2 and 4 were taken under pressure at 2.5 atmosphere absolutely in a one-looking chamber 0.2 m³ capacity and 20 bars maximum working pressure. Each session consisted of three 20-minute oxygen periods, two 5-minute air breaks, and 10-minute compression and decompression periods. So HBO was given as oxygen of 100 % at 2.5 ATA for 60 min and total HBO treatment time was 80 min. It was performed 4 times a day for the initial 4 days, and then 3 times a day for the following 3 days, for a total of 7 days. Total HBO application number was 14.

Animals were sacrificed and a wide U-shaped incision was made under costal margins to investigate the extent and the type of adhesion formation, 7 days later by an observer blinded to the identity of the experimental groups. Each animal was evaluated by using of modified scale devised by Evans et al (25). According to this scale, 0=no adhesions, 1=smooth adhesions splitting spontaneously or with weak traction, 2=firm adhesions splitting by traction, and 3=dense adhesions requiring sharp dissection. Next, cecum and the opposite parietal peritoneum and the adhesion areas were excised for both histopathology and biochemical examination for tissue-peritoneal hydroxyproline level measurement.

Tissue Hydroxyproline level measurement

Tissue samples were hydrolysed in 6M hydrochloric acid, at 105 °C for 18 hours and evaporated until they are dry. Hydroxyproline levels were analysed by colorimetric methods with Ehrlich’s reagent (10g p-dimethylaminobenzaldehyde, 11 mL perchloric acid). Hydroxyproline contents were measured against standard concentrations and are expressed as microgram per milligram of tissue (26).

Pathologic Examination

Two samples with a mean size of 1 x 1 x 0.4cm from cecum wall and parietal peritoneum of each rat were examined. The samples were fixed in a 10 % formaldehyde solution. After dehydration, sections of 5-um thickness from paraffine blocks were

Tab. 1. The distribution of the number and grades of the adhesions, hydroxyproline contents and results of the pathologic examinations according to the study groups.

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>p<sup>⁰</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of adhesions</td>
<td>3 (0-5)</td>
<td>1 (1-3)</td>
<td>0 (0-1)<sup>a</sup></td>
<td>0 (0-0)<sup>b</sup></td>
<td><0.001</td>
</tr>
<tr>
<td>Grade</td>
<td>3 (0-3)</td>
<td>2 (1-3)</td>
<td>0 (0-1)<sup>a</sup></td>
<td>0 (0-0)<sup>b</sup></td>
<td><0.001</td>
</tr>
<tr>
<td>Inflammation</td>
<td>1 (1-1)</td>
<td>1 (1-3)</td>
<td>1 (1-2)</td>
<td>1 (1-2)</td>
<td>0.248</td>
</tr>
<tr>
<td>HPC content (ug/mg of tissue)</td>
<td>73.4±31.40</td>
<td>51.3±16.41</td>
<td>44.7±4.10<sup>c</sup></td>
<td>123.8±57.00<sup>c</sup></td>
<td>0.005</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>1 (0-2)</td>
<td>1 (1-3)</td>
<td>1 (0-2)</td>
<td>1 (0-3)</td>
<td>0.213</td>
</tr>
</tbody>
</table>

^a the difference from Group 1 was statistically significant (p<0.01), ^b the difference from Group 2 was statistically significant (p<0.001), ^c the difference from Group 3 was statistically significant (p<0.001), ^d Kruskal-Wallis test, ug hydroprolin/mg – microgram hydroxyproline/milligram wet weight
taken by a microtome. Under a light microscope these sections were examined after hematoxylin-eosin staining. Inflammations were investigated by examination of the quantitative density of inflammatory cells an types, mesotel morphology, cellular responses such as fibrosis. All of them were investigated by the same pathologist unaware of the study groups.

Statistical analysis

A sample size of 6 per group was required to detect at least 2-unit difference between control and any case group in number of adezyon with a power of 80 % at the 5 % significance level. Sample size estimation was calculated by using NSCC and PASS * statistical package program (Hintze, 2001). NCSS and PASS. Number Cruncher Statistical Systems. Kaysville, Utah). All analyses were performed using an SPSS (v.11.5) statistical software package. (SPSS, Chicago, 11, 5). Whether the distributions of HP content were normally or not were determined by using Shapiro Wilks test. Data were shown as mean± standard deviation or median (minimum − maximum), where appropriate. The differences among groups were evaluated by Kruskal Wallis test. When the p-value from the Kruskal-Wallis test statistics is statistically significant, multiple comparison test was used to detect which group differs from which others. A p value less than 0.05 was considered statistically significant.

Results

No mortality occurred in study groups. The distribution of the number and grades of the adhesions, hydroxyproline contents and results of the pathologic examinations according to the study groups are summarized in Table 1 and Figure 1.

![Figure 1](image1.png)

Fig. 1. Total adhesion numbers and grades, inflammation and the fibrosis of the groups. Statistically significant differences were observed between groups 1 and 4 and between groups 1 and 3 regarding the adhesion numbers and grades (p<0.001). In the pathologic analysis of the adhesion tissues, there was no statistically significant difference between any of the groups, including the control group, regarding inflammation and fibrosis (p>0.05).

![Figure 2](image2.png)

Fig. 2. Hydroxyproline contents of the groups. HBO+G-CSF group (group 4) was significantly different from control (group 1), HBO (group 2) and G-CSF (group 3) groups, regarding hydroxyproline contents (p=0.005).

There was a statistically significant difference between the control group (group 1) and groups 3 and 4, regarding adhesion grades (p<0.001). No statistically significant difference was observed between control and HBO group (p>0.05). Adhesion numbers were statistically significant in group 1, as compared to groups 3 and 4 (p<0.001). There was no statistically significant difference between groups 1 and 2 (p>0.05). For adhesion grades and numbers, there were significant differences between HBO (group 2) and G-CSF (group 3) groups pP<0.001).

Hydroxyproline levels of the intra-abdominal wounds are summarized in Table 1. There was a statistically significant difference between the control group and groups 3 and 4, regarding hydroxyproline content (p=0.005). There was no statistically significant difference between groups 1 and 2 (p>0.05), (Fig. 2). HBO + G-CSF group was significantly different from control, HBO and G-CSF groups, regarding hydroxyproline contents (p=0.005).

The results of the pathologic examinations of the study are summarized in Table 1. Regarding the pathologic analysis of the groups who received additional therapy, there was no statistically significant difference from the control group (p=0.248). Fibrosis also did not differ significantly among the groups (p=0.213).

Discussion

Results of the present study demonstrate that, combined using of hyperbaric oxygen (HBO) and granulocyte-colony stimulating factor (G-CSF), significantly decreases postoperative adhesion formation in a rat model. All types of abdominal surgeries can lead to peritoneal adhesions with significant morbidity and mortality (27, 28). Therefore, preventing or reducing the adhesion formation is one of the goals of the surgical studies
In this present study, according to adhesion numbers, grades, inflammation, fibrosis and HP contents we did not find significant differences between the control and the group that was treated with HBO only. However, combined use of HBO and G-CSF was found to be effective with significantly different effect on adhesion formation. In the light of these results, we concluded that HBO treatment did not beneficially effect adhesions. However, there was a difference, almost reaching the level of significance, between the control group and the group that received both GCSF and HBO regarding adhesions (p<0.001). According to the pathologic examination, the formation of fibrosis was not significantly different in treatment groups compared with the control group (p=0.213). Adhesion numbers and grades did not differ significantly among the G-CSF only and HBO-G-CSF groups (p>0.05). However, HBO+G-CSF group was significantly different from G-CSF group, regarding hydroxyproline contents (p=0.005). Hydroxyprolylin (HP), which is the result of the degradation of collagen, develops by hydroxylation of prolin aminoacid and it is a major component of collagen. It keeps the stability of three part spiral structure of collagen through hydrogen bonds (53–57). So it is a good marker of wound healing. In this study, hydroxyproline levels in group 4 were found to be significantly different from that of the control (p=0.005), suggesting that HBO and G-CSF have an increasing effect on early collagen cross-linking, which improves healing. A study by Altuntas et al reveals that peritoneal HP levels are influential in adhesion of seprafilm to polipropilen mesh. In that study the authors claim that increases of HP level have a fundamental role on adhesion reducing effect of seprafilm (56). In Milligan, et al studies, since tissue hydroxyprolin is a product of collagen breakdown, it is seen especially higher in a neutrophil group. In this study it is stated that especially in neutrophil dependent collagen break down process, tissue HP levels may be an indicator (57).

Hyperbaric oxygen and granulocyte colony-stimulating factor were preferred because of their potential synergistic effects on improving peritoneal defence mechanisms and a number of activities of inflammatory cell functions such as, neutrophil chemotaxis, migration, cell adhesion, synthesis, release of cytokines, tissue oxygenation, angiogenesis and finally wound healing. Importantly, although hyperbaric oxygen therapy in the healing of chronic wounds found to be effective and thereby maintains cellular epithelial function, it does not appear that HBO treatment could reduce the adhesion formation alone. We have determined that HBO and G-CSF had markedly positive and protective effects on postoperative intra-peritoneal adhesion development, when used together. An understanding of the pathophysiologic and molecular basis of postoperative adhesion formation should expedite the improvement of new, easy applicable, cost-effective and universally accepted methods for reducing adhesion formation.

References

Received November 2, 2009.
Accepted January 5, 2010.