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Abstract

Alzheimer’s disease (AD) is characterized by a gradual and hierarchical decline in cognition that is
essentially connected with the functional properties of brain areas with the highest degree of plasticity.
Corresponding brain regions are mostly affected by histological determinants of AD. Crucial pathways
involved in maintaining the neural plasticity were also shown to be impaired in AD. Brain derived
neurotrophic factor (BDNF) seems to be one of the crucial factors connected with the majority of cog-
nitive and plasticity deficits observed in AD. Recent studies indeed confirm that BDNF is severely dis-
turbed in AD and form an important signaling pathway influencing neural plasticity and neural network
status in general. Recently, several behavioral interventions including physical and mental activity or
training programs, environmental factors during the early development, and dietary restriction were
shown to enhance BDNF levels, neurogenesis, neural cell survival and plasticity and thus improve cogni-
tive properties of the brain. Described behavioral interventions could form a promising approach for AD
prevention and treatment programs for prophylactic purposes or in the early stages of AD (Ref. 106).
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Alzheimer’s disease (AD) is a neural disorder characterized
by progressive development of dementia with gradual and hier-
archical decline in cognition. Both features are essentially con-
nected with the functional properties of neural networks in the
brain areas involved in processing of higher cognitive functions.
One of the basic features of these brain areas consists of an ad-
equate degree of adult neural plasticity (1). Indeed, the most af-
fected brain areas are those with the highest degree of adult plas-
ticity. The hippocampus, temporal and parietal cortices are brain
areas, which dysfunction is the most severe in AD patients. On
the other hand, the primary sensory cortices with a relatively low
degree of adult plasticity are resistant to functional deficits. In-
terestingly, the olfactory bulb function, which is characterized
by a very high degree of neural plasticity throughout life, is se-
verely affected in AD patients (2, 3). All described brain areas
are phylogeneticaly young, mature very late in the course of on-
togeny and retain relatively high degree of adult plasticity (4, 5).
All these properties make them susceptible to development of
neurodegenerative diseases including AD. One of the two basic
histological determinants of AD — neurofibrillary tangles — con-
sists of tau protein, which is involved in synapse reorganization
and thus synaptic plasticity (6, 7, 8). Consequently, AD and neu-

ral plasticity are very closely connected and understanding com-
plex facets of this relation could be very important for both patho-
physiology and therapy of AD.

Neural plasticity

Neural plasticity is a complex dynamic process for maintain-
ing the best adaptation of neural network properties to the chang-
ing external environment. Basic modules of neural plasticity com-
prises an adaptation of intrinsic properties of single neurons, a
reorganization of synaptic connections between neurons and in-
corporating of the new neurons into existing neural network.
Although the mechanisms underlying neural plasticity is not yet
completely understood it was shown that excitatory/inhibitory
balance, neurotrophins, Ca?" dynamics, intracellular and extra-
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cellular matrices are important determinants of plastic changes
in neural networks (10, 11, 12, 13, 14, 15). Resulting remodel-
ing of the neural networks is a consequence of the balanced in-
terplay between described phenomena.

Neural network reorganization is generally induced by
changed pattern of neural activation that locally destabilizes ex-
isting brain structures. Such destabilization leads to activation
of Hebbian form of plasticity that could change synaptic strength
very effectively and rapidly (seconds to minutes) by means of
coincidence detection. Synapses that are co-activated are strength-
ened and desynchronized synapses are weakened (16). This form
of plasticity is, however, destabilizing while it operates accord-
ing to the positive feedback rule (17). The most important syn-
aptic structures involved in Hebbian plasticity are glutamatergic
AMPA and NMDA receptors. Homeostatic plasticity represents
the other stabilizing and slower (hours to days) form of neural
plasticity (17, 18). This form of plasticity comprises adjusting
intrinsic excitability of neurons, synaptic scaling (modifying the
level of activity on all synapses of the particular neuron to main-
tain the stable level of its activity) and modulation of the level of
Hebbian plasticity in neurons (metaplasticity) (19, 20, 21). Cel-
lular mechanisms involved in neural plasticity/stability machin-
ery include changing in synaptic receptor number and their sub-
unit composition (22, 23, 24, 25), formation, retraction and mo-
tility of dendritic spines (26), Ca®' signaling pathways (27), pro-
tein formation and degradation (28).

On the systemic level, neural plasticity of the specific corti-
cal regions could be affected by the activity of certain neuromo-
dulatory systems in the brain. Cholinergic, serotonergic, adren-
ergic and dopamonergic systems seem to be involved in modu-
lating of plasticity level of the cerebral cortex (29, 30). These
systems are generally activated by non-specific afferent pathways,
which are thought to convey information about the context of
the specific information (visual scene, sound etc.) processed in
different cortical areas. These systems signal the contextual value
of specific signals (relation to previous experience, emotional
content etc.) and could play a permissive role for reorganization
and then stabilization of the new information (31). Thus, neuro-
modulatory systems are substantially important for acquiring the
new information and its long-term retention, and for adaptation
to unfamiliar environment. Both processes crucially determine
cognitive abilities of an individual.

A lot of studies revealed that almost all cellular and systemic
mechanisms involved in neural plasticity machinery are disturbed
in the brain of AD patients. Specifically, Ca?>* homeostasis, which
is involved in different mechanisms connected with neuronal plas-
ticity including dendritic spine motility, Hebbian as well as ho-
meostatic form of plasticity was found to be impaired in AD
(32). Impaired Ca*" homeostasis could also lead to excitotoxic
injury and invoke apoptosis in neurons. Balance between inhibi-
tion and excitation seems to be maintained even despite the mark-
edly decreased number of synaptic connections (33). Composi-
tion of synaptic receptor subunits is, however, changed, which
could affect functional properties of synaptic transmission and
plasticity (33). It was shown that reelin, a protein that is impor-

tant in developing neural networks as well as in adult plasticity
(34), together with apolipoprotein E signaling pathway contrib-
utes to inhibition of tau protein phosphorylation (35). Hyper-
phosphorylation of tau protein is a crucial step toward formation
of paired helical filaments (PHF) found in AD brains (36, 37,
38, 39). Furthermore, it was found that very high degree of syn-
aptic plasticity during hybernation cycle is accompanied by tau
phosphorylation and formation of reversible PHF-like structures
(40). Hyperphosphorylation of tau protein could be a consequence
of impaired plastic changes associated with elevated Ca** level
leading to activation of apoptotic pathways. It was proposed that
tau protein hyperphosphorylation could represent a protection
against the cell death while neurons expressing phosphorylated
tau are more resistant to apoptosis (40, 41).

On systemic level, basal forebrain cholinergic system that
critically influences neural plasticity (30) is severely impaired in
AD (42, 43). Interestingly, other important neuromodulatory sys-
tems (serotonergic, noradrenergic and dopaminergic) seem to be
not significantly affected in AD (44).

In AD patients as well as in animal models of AD, cognitive
decline was more strongly correlated with the synaptic density
decrease than with B-amyloid plaque or neurofibrillary tangles
accumulation (45, 46). In the animal model of AD, synaptic den-
sity and cognitive decline was clearly observed while no 3-amy-
loid plaque depositions were detected (46).

All described cellular or systemic deficits found in AD are
connected with mechanisms of neural plasticity. Although im-
portant mechanisms of plasticity are severely impaired in AD,
several studies have suggested that parallel signaling pathways
are activated in order to reduce disbalance in neural networks
activation found in the course of AD progression (33, 47) and
cognitive decline is observed later than pathological findings are
(48). These facts should be taken into account for therapeutic
interventions in AD patients especially in early stages of the dis-
ease. Early identification of AD development is crucial while
protective interventions against rapid AD progression in the early
stage of the disease could be mostly affective.

Brain-derived neurotrophic factor (BDNF)

BDNF is a neurotrophin with the most widespread expres-
sion in the developing and adult mammalian brains (49), acting
mainly through high-affinity trk B receptor. BDNF is important
for survival of many types of neurons as well as for neurogenesis
in adult brain (50, 51). During the last decade, a lot of evidence
was collected to show that BDNF is critically connected with the
neural plasticity through its important influence on neural re-
sponsiveness, synaptic morphology, transmmiter release, balance
of excitation and inhibition (52, 53, 54). Deficits in BDNF-TrkB
signaling complex is related to deficits in neural circuits and their
plasticity and hence deficits in learning, memory and overall
cognition (50, 56, 57).

Downregulation of BDNF was found to be associated with
many brain-related disorders (58, 59, 60). Disturbances in BDNF
activity were recently found also in AD (61, 62, 63, 64, 65). In
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AD, brain structures are not equally affected by reduced BDNF
protein content. It was reported that brain regions mostly im-
paired in AD have corresponding deficits in BDNF signaling.
Specifically, hippocampus, frontal, temporal, parietal and ento-
rhinal cortices are mostly affected by reduced BDNF protein
content and Trk B receptor distribution (64). Interestingly, no
significant difference in BDNF immunoreactivity was reported
between neurons containing and neurons free from neurofibril-
lary tangles (66). Strongly reduced BDNF reactivity was found
in core region of 3-amyloid plaques while surrounding neurons
express strong BDNF immunoreactivity (66). Interestingly, ab-
sence of BDNF and Trk B protein content was found in astro-
cytes and microglia of AD patients (67).

The central role of BDNF in development of AD is further
supported by findings that almost all pharmacological therapy
currently used in AD is, usually unintentionally, connected with
upregulation of BDNF signaling pathways (65). BDNF levels
was shown to be increased after drugs interacting with gluta-
matergic system through NMDA or AMPA receptors (68, 69,
70), canabinoids (71), GABA-B antagonist (65, 72), estrogens
(73), phosphodiesterase inhibitors (74), and lithium (75).

Taking together, impairment in BDNF signaling pathway is
substantially disturbed in AD but only in certain brain areas.
Direct exogenous increase of the BDNF level should be consid-
ered with cautious while exogenous administration of BDNF
would increase overall level of BDNF even in regions contain-
ing normal BDNF levels. Abnormal increase in BDNF level could
invoke undesirable effects on neural networks in affected regions
manifesting as seizure or epileptic-like activity (59, 76). As a
consequence, too high and too long excitatory activation could
induce metabolic disbalance leading to the activation of apoptotic
pathways in brain areas, which are not affected by AD. Such
interventions could thus even worsen the deficits in the brain of
AD patients.

Behavioral interventions aimed to stabilize neural networks

AD as many other brain related disorders is caused by mix-
ture of genetic predisposition and environmental factors. In the
recent years, several studies provide evidence that susceptibility
to AD could be decreased by certain life style factors. Specifi-
cally, physical and mental activity and diet at middle-age posi-
tively influence incidence of AD (77, 78, 79). Epidemiological
studies that investigate differences in the incidence of AD be-
tween rural and urban populations and between populations of
different cultural background have found substantial differences
between studied groups indicating that life style factors are in-
deed important for pathophysiology of AD . Underlying systemic,
cellular and molecular pathways that could explain such results
are not known. Recent studies have, however, revealed several
plausible mechanisms involved in protection against AD devel-
opment. Interestingly, almost all mechanisms comprise mainte-
nance of neural plasticity degree and BDNF level in neural tissue.

It was clearly shown that animals reared in enriched envi-
ronment perform better in cognitive tasks and their cortical and

hippocampal BDNF level was upregulated in comparison to their
standardly reared mates (82, 83). Enhanced physical activity was
also shown to increase BDNF levels and cognitive performance
(84, 85, 86). It was suggested that exercise is an effective anti-
oxidant therapy (87). Physical and mental activity thus seems to
desirably interact with AD development. Indeed, recent studies
proved that environmental enrichment and voluntary exercise
caused marked reduction of 3-amyloid deposits in a transgenic
model of Alzheimer’s disease (88, 89) and synaptic activity af-
fects B-amyloid production (90). Furthermore, behavioral plas-
ticity-based training programs are able to significantly enhance
cognitive functions in older adults with non-pathological age-
related cognitive decline (91). We could thus expect that similar
plasticity reinforcement programs could be useful also in patients
with AD.

Environmental influence during the early stages of develop-
ment (during maturation) could also be very important for the
susceptibility neurodegenerative diseases. Maternal care affects
the BDNF level, cholinergic innervation in hippocampus and
enhances spatial learning and memory in rats (92). On the other
hand, psychological insult in early development was shown to
influence susceptibility to several degenerative brain disorders
(93).

Most dietary approaches with respect to AD were focused
on the dietary composition. Vitamin E and C (used separately or
in combination) seem to be effective in AD, probably through
their antioxidative properties (94, 95, 96), but their effects are
still contradictory (97). Recently, dietary restriction, especially
intermittent fasting, was shown to be protective to neural tissue,
cardiovascular system and against tumorigenesis (98, 99, 100).
Increased levels of BDNF and increased neurogenesis in hip-
pocampus and cerebral cortex were shown to be associated with
dietary restriction (101, 102, 103). Furthermore, precondition-
ing induced by dietary restriction decreases apoptosis and in-
flammatory response in cardiac tissue (100). While apoptosis
and inflammation are present in brain tissue of AD patients (104),
it is reasonable to expect similar benefits of dietary intervention
before the onset or even in the early stages of AD.

All mentioned behavioral interventions (physical and men-
tal activity, environmental factors during the early development,
dietary restriction) were proposed to invoke adaptive cellular
response via synthesis of BDNF, heat-shock protein 70 and glu-
cose-regulated protein 78. These factors are involved in mecha-
nisms of cellular protection against oxidative and metabolic in-
juries (105), promotes neurogenesis and neural plasticity (106)
that could protect neural tissues against development of AD or
reduce the AD progression.

Concluding remarks

Neural plasticity seems to be severely defected in AD and its
deficits are responsible for cognitive decline observed in AD
patients. BDNF is crucially disturbed in AD and form an impor-
tant signaling pathway influencing neural plasticity and neural
network status in general. Proper reinforcing of the important
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signaling pathways could be promising approach for therapeutic
interventions in AD patients especially in early stages of the dis-
ease. Physical and mental activity, environmental factors during
the early development, and dietary restriction are causative and
very promising approach for AD prevention and treatment pro-
grams for prophylactic purposes or in the early stages of AD.
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